

RC CONSTRUCTION SYSTEMS

DR. SAMEIR M. HAMMAD

LECTURER OF ARCHITECTURAL ENGINEERING, BENHA FACULTY OF ENGINEERING

E 1122 BUILDING CONSTRUCTION IB

LECTURE CONTENT

RC SLABS

RC SLABS COMPARISON

Slab Type		Loads Transferring	Slab Thickness	Maximum Efficiency	Span
Solid Slab	One-way Solid slab	One way only	Floors: Span/ 30 Roofs: Span/ 36 (10 cm min.)		1.8-5.5 m
	Two-way Solid slab	Two ways	Slab perimeter/ 180 (10 cm min.)	Square/ nearly square bays	4.5-12 m
Flat Slab	Two-way flat plate	Two ways	Span/ 33	Regular column grid with some flexibility in placement	3.6-7 m
	Two-way flat slab	Two ways	Span/ 36		6-12 m
Hollow Block	Two-way Hollow Block	Two ways	Span/ 24		5-12 m
Waffle Slab	Two-way waffle slab	Two ways	Span/ 24		7-16 m

SOLID SLAB

AE 1122 BUILDING CONSTRUCTION IB

FLAT SLAB

AE 1122 BUILDING CONSTRUCTION IB

6

drop panel

HOLLOW BLOCK

WAFFLE SLAB

AE 1122 BUILDING CONSTRUCTION IB

08-Mar-19

10 MINS. EXERCISE

On A4 paper, draw a sketch (Looking-up and Section) to a hall with 24 m Length and 8 m width

- Choose the Suitable Structural System
- Design the main elements of that system

9

08-Mar-19

OTHER RC CONSTRUCTION SYSTEMS

RC Frames Handling COMPRESSION loads

RC Shell Structure Handling TENSILE and SHEAR stresses

AE 1122 BUILDING CONSTRUCTION IB

08-Mar-19

RC FRAMES

AE 1122 BUILDING CONSTRUCTION IB

08-Mar-19

RC SHELL STRUCTURE

AE 1122 BUILDING CONSTRUCTION IB

08-Mar-19 12

PRE-CAST CONCRETE CONSTRUCTION

CONCEPT AND PROCESS

Concrete units are cast and steam-cured in a planet off-site, transported to the construction site, and set in place as rigid component with cranes.

CONCEPT AND PROCESS

I. Mass Production

AE 1122 BUILDING CONSTRUCTION IB

08-Mar-19

ADVANTAGES AND DISADVANTAGES

AE 1122 BUILDING CONSTRUCTION IB

PRE-CAST COMPONENTS

SLABS

SLABS

Solid Flat Slab

Span: 3.6 – 7.0 m Width: 0.12 m Depth: Span/ 40 Hollow Core Span: 3.6 – 12.0 m Width: 0.4 – 1.4 m Depth: Span/ 40

Single Tee Span: 9.0 – 36.0 m Width: 2.4, 3.0 m Depth: Span/ 30 **Double Tee**

Span: 9.0 – 36.0 m Width: 2.4, 3.0 m Depth: Span/ 28

BEAMS

AE 1122 BUILDING CONSTRUCTION IB

08-Mar-19

BEAMS

Rectangular Width: 0.3 – 0.4 m Depth: 0.61, 0.81, 1.0 m **L-Shaped** Width: 0.45/ 0.3 m Depth: 0.61, 0.81, 1.0 m **Inverted Tee** Width: 0.45/ 0.25 m Depth: 0.51, 1.52 m **AASHTO Girder** Width: 0.45 m Depth: 0.91, 1.14, 1.37 m

COLUMNS

AE 1122 BUILDING CONSTRUCTION IB

08-Mar-19

WALLS

Solid Panels Hight: Up to 7.0m Thickness: 0.09 – 0.25 m **Composite Panels** Hight: Up to 7.0m Thickness: 0.14 – 0.3 m **Ribbed Panels** Hight: Up to 14.0m Thickness: 0.3 – 0.61 m

WALLS

AE 1122 BUILDING CONSTRUCTION IB

ASSIGNMENT #9

On 50x70 cm paper, Draw to scale **1:20** the Pre-Cast Components (Slabs, Beams, Columns and Walls)

Assume:

- column dimensions 30x30 cm
- Any missing dimensions.

CONTACTS

http://bu.edu.eg/staff/sameir.hammad

Saturday, Sunday and Tuesday ... 9:00 am to 2:00 pm

Sameir M. Hammad

AE 1122 BUILDING CONSTRUCTION IB